Fotoconversión y Termoconversión de la luz solar

La fotosfera y la constante de Stephan-Boltzmann

La radiación solar que llega a la Tierra procedente del Sol, en forma de luz visible procede de la fotosfera solar. Aproximadamente, se trata de un emisor de radiación de cuerpo negro a una temperatura cercana a los 6000 K. En la descripción de este proceso de transferencia de calor, la ley de Stefan—Boltzmann, la cual describe la emisión de radiación, juega un papel esencial

 La obtención de la fórmula de la constante de Stephan –Boltzmann solo es posible mediante la aplicación de métodos propios de la física estadística. La termodinámica clásica no permite obtener este resultado, en rigor, solo permite concluir que el cuerpo negro emite energía por unidad de tiempo proporcionalmente a la cuarta potencia de la temperatura absoluta T(K).

 La termodinámica estadística va más allá de esto, proporcionado la fórmula deseada. El efecto útil de este resultado, no consiste solo en  la obtención de la fórmula como tal, sino también en el hecho de que, a lo largo de la demostración, se puede apreciar con claridad el vínculo esencial existente entre las dos opciones de utilización de la luz solar como fuente de energía: la térmica y la fotovoltaica.  La solución de la integral (1) da como resultado:

BM04r_F3_Fórmula1

Nótese que se trata, hasta aquí de radiación en estado de equilibrio, por ejemplo radiación encerrada en una cavidad (ver Fig. 1).

Sin embargo, ley de Stephan—Boltzmann se refiere a un proceso de emisión de radiación. Se trata de  un caso típico de un sistema en estado de desequilibrio en el que tiene lugar un proceso de transferencia de energía por radiación y establece que “un cuerpo negro emite radiación con una potencia emisiva hemisférica total, [W/m²] proporcional a la cuarta potencia de su temperatura”

BM04r_F1Cavidad con radiación cuerpo negro equilibrio

Fig. 1. Cuerpo negro en equilibrio.

Sea la misma cavidad con radiación en equilibrio en su interior, en la que se ha practicado un orificio de forma que se ha convertido en un sistema emisor de radiación. Se conoce también que, de acuerdo con la teoría cuántica, los fotones viajan a la velocidad de la luz c y que estos abandonan la cavidad en proporción directa al diferencial de ángulo solido asociado a la dirección de su trayectoria,   obviamente, como una mitad de estos fotones va en una dirección y la otra en la contraria, resulta la expresión deseada:

BM04r_F4_Fórmula2

donde: es la constante de Stephan–Boltzmann y es  igual a 5,6704·10-8 Wm-2K-4.

Esta expresión puede ser escrita de una forma diferente. Para ello es necesario introducir el concepto óptico de índice de refracción, el cual se define de acuerdo con la formula:

BM04r_F5_Fórmula3

 En realidad se trata de la inclusión en el modelo del hecho físico de que la presencia de un medio dieléctrico de índice de refracción diferente de uno, modifica la expresión de la constante de Stefan–Boltzmann para el vacio, aumentando su valor. En el caso  de la fotosfera solar como emisor de radiación de cuerpo negro, se tiene n = 1.

Interpretación física de la demostración: foto y termo conversión de la luz solar

 A los efectos de establecer una relación conceptual entre las dos formas básicas de utilización de la luz solar como fuente de energía, la térmica y la fotovoltaica, se pone de manifiesto el carácter integral de la emisión de energía térmica que describe la ley de Stefan—Boltzmann. Se trata de reparar en el hecho de que a la emisión de energía contribuyen todos los modos de vibración presentes en el espectro de emisión.

 Conceptualmente, la diferencia entre una forma u otra forma de conversión de la luz solar reside en el hecho de que la celda solar convierte la luz solar en energía eléctrica intervalo por intervalo de frecuencia, mientras el cuerpo que absorbe la luz, se calienta mediante un mecanismo fonónico y entonces emite radiación de acuerdo con la ley de Stephan-Boltzmann.

 Desde el punto de vista espectral, esto último lo hace ya integralmente, desentendiéndose de la distribución de frecuencias. Sin embargo, y esto es lo más importante, a ella contribuyen, como contribuyen también en el caso de la conversión fotovoltaica, los modos de vibración descritos anteriormente.

Blog4r_F2_Colector y móduloFV

Fig.2. Colector solar plano y módulo fotovoltaivo.

 Dado que se trata de una forma menos detallada de conversión, la cual lleva implícito cierto nivel de desinformación y, por tanto, un proceso de conversión de una forma de energía en otra que tiene lugar con mayor grado de irreversibilidad, resulta esperable que el resultado final sea menos valioso, calor a baja temperatura, en contraposición a la energía eléctrica producida por la conversión fotovoltaica; una energía de máxima gradación, energía eléctrica, la que resulta del proceso de fotoconversion de la luz solar.

 

Share
Add Comment Register



Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *


*

Puedes usar las siguientes etiquetas y atributos HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>