Fotosíntesis y fotoconversion de la luz solar

Hasta el presente en los diferentes estudios realizados sobre el tema, se le ha prestado poca atención al valorar y caracterizar la luz solar como fuente de energía (Fig. 1), a su peculiar estado de agregación. Se trata, en esencia, un gas de fotones de amplio espectro de frecuencias, lo que le concede un carácter muy entrópico.

BM10_F1_Luz solar

Fig.1. Luz solar.

 Con una marcada vocación docente, el trabajo ha sido concebido para brindarles a los lectores un objeto de estudio novedoso. Más aun, de mostrar con claridad el escenario al que la humanidad debe aspirar. A esto se añade el hecho de que, temáticamente, la relación entre estas disciplinas, especialmente entre la física y la biología es muy intensa, hecho que desafortunadamente parece ignorarse y el cual, sin embargo, el tema tratado pone de manifiesto con mucha claridad.

Curiosamente, y esto es muy importante, en la medida que el nivel de vida de un país es mayor, el impacto ambiental de la trayectoria de vida de un ser humano es mayor.

En los últimos años, muchos trabajos muestran  de forma muy dramática aspectos de la degradación ambiental. Es solo una muestra del creciente interés que en el mundo despierta este tema vital. Este razonamiento lleva directamente a una conclusión: trabajar con tesón y conocimiento de causa en este sentido podría tener una elevada significación conservacionista. Es ésta una forma de luchar por la conservación de la bio-diversidad y el medioambiente de nuestro planeta.

En relación con un programa docente, y como un resultado adicional, se puede afirmar que por esta vía se le facilita a los estudiantes y lectores, en grado sumo, la comprensión de tres materias: física, química y biología.

BM10_F2_Física_químca_biogía

Fig. 2. Materias: física, química y biología.

El célebre efecto fotoeléctrico, con toda la actividad experimental y teórica que se le asocia, se ubica en los cimientos mismos de la mecánica cuántica, que es lo mismo que decir de la física moderna. Por esta razón, la comparación entre el mecanismo cuántico de funcionamiento de una celda solar, un elemento artificial resultado de la física del estado sólido, su capacidad de absorber los fotones con un carácter espectral, y el de la absorción espectral de los propios fotones en el proceso de fotosíntesis que tiene lugar en una planta, resulta de sumo interés (Fig. 3).

BM10_F3_Fotoconversión y fotosíntesis de la luz solar

Fig. 3. Fotoconversión y fotosíntesis de la luz solar.

Share

La Termodinámica solar y la encíclica del papa Francisco

BM09_F1_Encíclica papalLa encíclica del Papa Francisco Alabado… (Fig. 1) le concede especial importancia a la afectación que le ocasiona a nuestro planeta y a sus recursos de vida la acción del hombre. Esto es particularmente así cuando la afectación es debida al uso de armas de destrucción masiva.

Fig. 1. Portada de la encíclica del papa Francisco.

En este sentido se debe enfatizar el hecho de que, además del uso de las bombas como tales, son particularmente dañinos los procesos de producción del llamado material fisionable que en ellas se utilizan.

Han resultado particularmente degradantes  para nuestra Tierra los procesos de producción de armas nucleares. Los proyectos nucleares de EEUU (proyecto Manhattan) y la Unión Soviética en la década de los cuarenta son un buen ejemplo de esto. Curiosamente, el estudio desde el punto de vista conceptual del uso de la luz solar como fuente de energía, proporciona el aparato conceptual adecuado para el análisis de este problema. En efecto, hasta el presente no se enseña con suficiente claridad en los cursos de termodinámica de las carreras universitarias y aun en los cursos de nivel medio superior, que el colosal desequilibrio potencial que se logra al fabricar una bomba atómica, por ejemplo, se logra al precio de una enorme compensación termodinámica.

Zonas enteras del mundo han resultado afectadas en el afán de obtener productos nucleares. A su vez, cuando la bomba es detonada se desencadena  un proceso de cinética nunca antes vista. El grado de irreversibilidad del proceso se manifiesta en los conocidos tres efectos destructivos de la bomba: un huracán de velocidad del orden de cientos de km por hora, un huracán de fuego y otro radioactivo, (Fig.2).

BM09_F2_TD_encíclica papal

Fig. 2. Representación de un huracán y la explosión de una bomba átomica.

Explicado de esta forma, el tema es perfectamente comprensible para un alumno del nivel medio superior. Sin embargo, nunca se enseña termodinámica de este modo. Esta es, en última instancia solo un ejemplo de la forma de educar a las futuras generaciones que la Encíclica del Papa  Francisco pide de nosotros.

Lo anteriormente señalado a modo de ejemplo es solo una expresión del criterio defendido en nuestra interpretación de la Encíclica de que el mundo exige para su supervivencia un cambio radical de las concepciones docentes vigentes y más aun de los temas que forman parte de los planes de estudio. En esta nueva concepción de la docencia ha jugado un papel fundamental el estudio de  la termodinámica de los concentradores solares, especialmente el vínculo esencial que se pone  de manifiesto en este estudio entre óptica y termodinámica de la luz solar (Fig.3).

BM09_F3_Termodinámica concentradores solares

Fig. 3. Portada del libro Termodinámica de los concentradores solares.

El milagro de la creación interpretado a través de nuestro Sol.            

Share

La luz solar y la vida en el planeta

Se destaca los fuertes vínculos existentes entre la astronomía, la meteorología y la ingeniería del aprovechamiento de la luz solar como fuente de energía. No obstante, es importante destacar también y tratar con algún grado de detalle, la importancia de la luz solar para la vida en el planeta, vista esta relación desde el punto de vista más general y con la segunda ley de la termodinámica como elemento de análisis.

Son tres los temas abordados, dos de ellos de forma comparativa, la fotoconversión de la luz solar (Fig. 1) y la fotosíntesis (Fig.2). Se trata de destacar el hecho de que, dado que la luz solar tiene como fuente de energía un carácter omnipresente que la relaciona con la vida de los animales y con la vida de las plantas, se debe trabajar esforzada y ordenadamente por lograr un escenario en el que el área del planeta dedicada a la vegetación, los cultivos incluidos, se complemente, fundamentalmente, con campos de celdas solares y los captadores térmicos. Todo ello debe ser alcanzado en gran escala de modo que la luz solar juegue el papel que le corresponde en el balance energético de las diferentes regiones del mundo.

BM08_F1_Aprovechamiento de la luz solar

Fig.1. Fotoconversión de la luz solar.

No se trata precisamente de exponer con extensión excesiva los fundamentos de la fotoconversión ni de la fotosíntesis de la luz solar.

BM08_F2_Fotosíntesis de la luz solar

Fig.2. Fotosíntesis de la luz solar.

No obstante, se presentan algunos elementos mínimos de física del estado sólido que permitan adquirir  una visión elemental, sencilla, pero rigurosa, del principio de funcionamiento de una celda solar. De igual modo, se describe el proceso de la absorción de los fotones solares en el esencial proceso de la fotosíntesis.

Se trata, sobre todo, de mostrar, comparativamente, los mecanismos de acción de la absorción fotónica tanto en un proceso como en otro. Y en el fundamento mismo del tratamiento está la segunda ley de la termodinámica, principio de la física y de la ciencia en general que parece subyacer en el centro mismo de la naturaleza y de la vida. Más aun, la segunda ley de la termodinámica, específicamente el principio de degradación de la energía que de ella se deriva, ha de resultar un elemento clave para  la preservación de los recursos de vida del planeta y de la vida misma.

Otro elemento omnipresente y muy activo de la interacción de la luz solar con la vida en la Tierra, es el viento (Fig.3). Como se conoce, el viento es en última instancia un producto de la acción de la máquina térmica que es el la atmósfera, alimentada por la energía procedente del Sol. Sin dudas, junto con la biomasa, la energía eólica es una de las fuentes de energía no convencional de mayor peso relativo en el balance energético mundial.

BM08_F3_Aprovechamiento Eólico

Fig.4. Aprovechamiento energético del viento.

Se trata de energía de gran valor, energía de máxima gradación, es decir de máxima calidad. Se trata de energía mecánica que puede ser convertida, en principio en un ciento por ciento, en energía eléctrica. Sin embargo, por su relación directa con la vida, el fenómeno del viento en su manifestación extrema, los huracanes, son el tema elegido para ilustrar con un ejemplo el mecanismo de acción mediante el cual la energía contenida en la luz solar se convierte en energía mecánica. La energía procedente del Sol se convierte en un proceso relativamente complejo que involucra el movimiento de rotación de la Tierra, en energía de máxima gradación, energía mecánica.

Share

Turandot, las cumbres de la Tierra y la educación solar

En el blog [1] se trata la relación entre el primer enigma de Turandot y las cumbres de la Tierra y de la esperanza que deposita la humanidad en encontrar una solución a los problemas actuales de la conservación del medio ambiente y el desarrollo sostenible de nuestro planeta.

El siguiente enigma

Si queremos que el mundo cambie, hay que preguntarse: ¿quién lo hará cambiar? Por supuesto, será la humanidad quien lo hará cambiar, pero para lograr esto los hombres y las mujeres  (la humanidad) deben ser educados en la conservación ambiente, las energías renovables y el desarrollo sostenible, (Fig.1).

BM07_F1r_Eduación ambiental_3Por ello no es difícil concluir que los profesores, especialmente los de la enseñanza general son los llamados a enfrentar  resolver el problema de la subsistencia humana. Ha sido escrito el siguiente epígrafe resultado de una experiencia personal.

Fig.1. Educación solar y ambiental.

 

La educación en energía solar

En La Habana, Cuba, se creó un grupo de trabajo en energía solar,  adscripto a en el entonces  Instituto de Investigación Técnica Fundamental (ININTEF) de la Academia de Ciencias de Cuba (ACC), en 1976, con el objetivo de desarrollar actividades de investigación y desarrollo en el campo del  aprovechamiento de la luz solar como fuente  la energía.

Después de más de dos años de trabajo algunos investigadores estuvieron ya en condiciones de trasmitir algunas de sus experiencias, tanto nacionales como internacionales, de  modo que  ya en octubre de 1979 fue impartido por primera vez el curso de especialización titulado Diversas Formas de  Aprovechamiento de la  Energía  Solar, auspiciado a nivel de Ministerio por la entonces Academia de  Ciencias  de  Cuba. Dos monografías fueron preparadas entonces, específicamente, para satisfacer las necesidades de los alumnos.

A partir de aquí, en diferentes versiones cada vez más perfeccionadas, el curso se  mantuvo durante quince años, la que permitió acumulas una singular experiencia que no tiene antecedentes en Iberoamérica. El contenido básico de la especialización abarcaba los cursos siguientes:

  • Radiación solar y astronomía posicional del Sol;
  • Termodinámica de la luz solar;
  • Cálculo de instalaciones solares de calentamiento de agua;
  • Óptica y termodinámica de los concentradores solares;
  • Usos térmicos de la energía solar;
  • Energía solar fotovoltaica.

De este modo quedaron expuestas en el curso las dos formas básicas de utilización de la luz solar como fuente de energía, la fotovoltaica y la térmica, (Fig.2). A partir de aquí se planteó el reto de darle al tema de la luz solar como fuente de energía un tratamiento unificado, independientemente del modo específico de aprovechamiento.

BM07_F2r_Diversas formas aprovechamiento energía solar

Fig. 2. Aprovechamiento térmico y fotovoltaico de la energía solar.

Resultó realmente sorprendente  descubrir que la aplicación de la termodinámica a una fuente de características tan peculiares como la solar, facilita en gran medida su propia  presentación como rama de la física. En efecto, se pudo comprobar  que materias tan alejadas del dominio de la gran masa de profesionales como la llamada física estadística (termodinámica estadística) encuentran en el caso específico de la luz solar como fuente de energía una nueva y estimulante área de aplicación que, sin dudas favorece la comprensión de la materia en sí.

Finalmente hay que señalar con énfasis,  que en la medida en que las diferentes versiones del curso se fueron desarrollando, los profesores fueron descubriendo que la luz solar como fuente de energía constituye un formidable objeto de estudio para la docencia en las ciencias básicas y en  otras materias específicas de las carreras de ciencias  e ingeniería y, de igual modo, para el desarrollo en el futuro profesional de una mentalidad racional en el uso de los recursos energéticos.

Los más sorprendentes, en mi condición de profesor principal de aquellos cursos, fueron los profesores de nivel medio que lograron matricularse en él. Es un hecho que solo a través de ellos es posible alcanzar la masividad que una empresa como la que nos proponemos puede llevarse  a feliz término. He ahí la idea esencial de esta iniciativa.

El tercer enigma de Turandot y las cumbres de la Tierra

¿y el tercer enigma?. Hielo que te hace arder, y se hiela con tu fuego. Blanca, y oscura. Si quieres ser libre te hace esclavo, si por esclavo te acepta te hace rey…

BM06_F3a_Enigmas_Turandot_cumbres_Tierra

Fig. 3. Tercer enigma de Turandot y las cumbres de la Tierra.

Turandot, en su orígenes, una vengativa y cruel princesa, finalmente se ha trasformado, ella ha sido la verdadera vencedora, finalmente ha comprendido el sentido del amor. Ha sido el triunfo del mal sobre el bien, del amor sobre el odio. Y es precisamente a lo que se aspira con las cumbres de la Tierra… El simbolismo es fuerte y claro.

Referencias

  1.  Alvarez-Guerra Jauregui, M.E. “El primer enigma de Turandot y las cumbres de la Tierra”. http://termodinamicasolar.energia-rural.com/2015/06/03/el-primer-enigma-de-turandot-y-las-cumbres-de-la-tierra/.
Share

El primer enigma de Turandot y las cumbres de la Tierra.

El medio ambiente se convirtió en una cuestión de importancia internacional en 1972, cuando se celebró en Estocolmo la Conferencia de las Naciones Unidas sobre el Medio Humano (conocida posteriormente como Cumbre de la Tierra de Estocolmo).

Fue la primera gran conferencia de la ONU sobre cuestiones ambientales internacionales,  y marcó un punto de inflexión en el desarrollo de la política internacional sobre la conservación y protección del medio ambiente, Fig.1.

BM06_F1a_Cumbres_de_la_Tierra

Los Enigmas de Turandot del Siglo XXI. El hoy célebre  Concierto de los Tres tenores celebrado con motivo del Mundial de Fútbol de 1990, tuvo como marco en las termas de Caracalla, Roma. Obras como la Aida de Verdi o la propia Turandot de Puccini, por ejemplos, han sido representadas en las Termas. El fragmento de la ópera Turandot “Nessun dorma” (nadie duerma en imperativo) sintetiza muy bien el filosófico argumento de la obra, Fig. 2.

BM06_F2a_Opera_TurandotHabiendo hecho el logro del amor de la bella y vengativa princesa el sentido de su vida, en la China milenaria, el protagonista decidió someterse a un cruel concurso. Este consistía en la solución de tres enigmas, tres acertijos, so pena de morir bajo el hacha del verdugo.

El primero de los enigmas resueltos por el príncipe, cómo se verá,  tiene un simbólico vínculo con el tema básico de las Cumbres. El acertijo reza así: “en la negra noche un fantasma iridiscente se eleva y despliega las alas sobre la negra e infinita humanidad. Todo el mundo lo invoca, todo el mundo lo implora, pero el fantasma desaparece con la aurora para renacer en el corazón de cada hombre. ¡Y cada noche nace, y cada día muere!”.

Intentemos resolver el problema con la ayuda de la termodinámica, más exactamente con una ciencia que es consecuencia directa de la termodinámica: la teoría de la información.

El llamado principio neguentropico de la información (PNI) nos guiará en el proceso de solución del problema. En [1] se expuso el problema de las 27 bolitas, generalizando este sencillo problema, se puede concluir que se trata de une aproximación sucesiva al resultado deseado, la detección de la bola diferente que, finalmente, conduce a  la total eliminación de la incertidumbre inicial.

En efecto, en cada etapa, mediante la obtención de  información, se va disminuyendo el nivel de incertidumbre. En rigor se trata, como se  adelantó anteriormente, de lo que en teoría de la información se conoce como principio  neguentropico de la información (PNI). Obviamente, neguentropia, en este contexto, es sinónimo de nivel de conocimiento sobre el sistema.

Yendo un poco delante, hacia el tema centro de esta disertación, se puede decir que la supervivencia de una especie en el largo camino de la evolución se basa, entre otras cosas, en la aplicación consecuente de este principio. La fórmula que establece el principio es:

                          Sf = Si – I                                                                (1)

El significado de la expresión es directo: dado un nivel inicial de incertidumbre sobre las posibles respuestas del sistema, el efecto de haber obtenido determinado nivel de información fiable sobre el mismo reduce el nivel de desinformación inicial. Sea Si  en nivel de desinformación que se tiene, sobre algo y sea I el nivel de información que se adquiere  sobre el problema en el proceso de solución. Finalmente, Sf  será el nuevo nivel de desinformación que queda después de este primer esfuerzo.

Si se analiza el enunciado del acertijo, en busca de cierto nivel de información, cabe preguntarse:    ¿el sentido del enunciado es concreto o simbólico? Obviamente, tiene un sentido alegórico. Más aún, si es alegórico, es de un gran interés humano, dado que el fantasma extiende las alas sobre toda la humanidad. Así nuestro nivel de desinformación ha disminuido. Sea Sf1 este nuevo nivel de desinformación. Obviamente se cumple que:

                                 Sf1  =  Si1  –  I1

Más información se puede obtener si se repara en el hecho de que se trata de algo positivo, algo muy sensible para todos los seres humanos. Un permanente lugar de privilegio en el corazón de los seres humanos solo lo ocupan los sentimientos. Finalmente sabemos que se trata de un sentimiento, pero, ¿un sentimiento de qué? Nuevamente se ha puesto de manifiesto el mecanismo de acción del PNI. Así, gracias a la nueva información obtenida, designada por I2, el nivel de desinformación se ha reducido a Sf2:

                                Sf2  =  Si2  –  I2

Pero aún no hemos logrado resolver el enigma, se requiere más información, que se ponga de manifiesto nuevamente el Mecanismo de acción del PNI. Ahora la gramática nos ayudará.

Completemos la frase: un sentimiento de…La palabra que falta será la solución de este primer enigma. Obviamente no es un sentimiento de odio, ni de amor, ni de patriotismo, ni de fe religiosa. Es algo que renace, que renace en el hombre y lo ayuda a vivir cada nuevo día, un sentimiento de … esperanza. ¡Esta es la solución!. La Esperanza, la misma que lleva a los hombres a reunirse en las cumbres de la Tierra (Fig.3). A imaginar una solución.

BM06_F3a_Enigmas_Turandot_cumbres_Tierra

Fig. 3. Primer enigma de Turandot y las cumbres de la Tierra.

Referencias

1.     Alvarez-Guerra Jauregui, M.E. “Enfoque termodinámico de la energía eólica”. http://termodinamicasolar.energia-rural.com/2015/05/14/enfoque-termodinamico-de-la-energia-eolica/

Share

Enfoque termodinámico de la Energía Eólica

Dada la importancia que reviste para el futuro energético de la humanidad las fuentes  renovables,  entre las que se destacan la solar y la eólica (ver Fig.1). También originada en la luz solar, resulta necesaria la realización  de una profunda y detallada  caracterización de cada una de ellas desde el punto de vista  termodinámico. Se alcanza así con estos análisis  una valoración mas cercana a la realidad de las posibilidades de cada fuente se energía, de sus ventajas y limitaciones. Un caso en el que esto se pone de manifiesto con particular evidencia es el de la energía eólica.

BM05_F1_Molino_de_viento_Aerogenerador1

Si se piensa ahora en un aerogenerador, se advierte al instante que este dispositivo opera, termodinámicamente, a un nivel máximo de gradación de la energía. Por otra parte, dada su disponibilidad en algunos puntos de la superficie de La Tierra en cantidades apreciables,  y  a partir de lo señalado anteriormente,  resulta evidente que la energía eólica presenta la muy atractiva característica de que se trata de la posibilidad de producir energía eléctrica en cantidades apreciables en el balance energético de un país.

Resulta indudable que la energía  eólica ha resultado muy adecuada para la producción de energía eléctrica, lo que la equipara en este aspecto a las fuentes las convencionales y la nuclear. Parecería que con relación a la energía del viento todo está resuelto y todo se resuelve, pero no es así. La  producción  de electricidad a partir  de generadores eólicos  esta sometida a toda una serie de problemas, algunos los cuales  tienen su origen en el carácter aleatorio de la fuente. Un histograma vientos,   luego de ser aproximado por una distribución  gaussiana (Fig. 1),  tiene asociado un determinado nivel de incertidumbre  que es lo mismo que decir  de desinformación.

BM05_F2_Distribución gaussiana

Fig. 2. Distribución gaussiana.
Un concepto propio de la teoría  de la información, no de la termodinámica clásica,  el de   entropía de una distribución, caracteriza  adecuadamente esta situación y contribuye a dar, sin dudas,  una visión objetiva  y realista del viento como fuente de energía. La desviación media cuadrática de la gaussiana resulta clave en esta determinación.   tienen su origen en el carácter aleatorio de la fuente. Un histograma vientos,   luego de ser aproximado por una distribución  gaussiana (Fig. 1),  tiene asociado un determinado nivel de incertidumbre  que es lo mismo que decir  de desinformación.
Un recordatorio necesario
La Segunda Ley de la Termodinámica, sin dudas, uno de los descubrimientos científicos más importantes del siglo XIX, subyace en la esencia misma de los procesos naturales.

 Por otra parte, una de las conclusiones más importantes  que se derivan de su  enunciado, constituidos por dos tesis independientes, específicamente de la primera de ellas, la referida a los procesos reversibles, es la existencia  de diferentes calidades o gradaciones de energía.  Una aplicación directa  de la clasificación  de Brillouin a las fuentes de energía  renovables más conocidas, arroja el siguiente resultado:

  1. Energía eólica y solar fotovoltaica (mecánica y eléctrica);
  2. Hidrógeno (química) a partir de la luz solar;
  3. Calentamiento de diversos tipos (calor).

Los grupos son definidos en términos de calidad de la energía y, en este contexto,  el mecanismo de acción  de la II Ley se manifiesta del siguiente modo: los procesos  de conversión  de una forma de energía  superior a otra de inferior calidad transcurren espontáneamente,  que es lo mismo que decir sin compensación. Por el contrario,  las transformaciones energéticas en sentido inverso solo son posibles al precio de una compensación.

El aerogenerador tiene lugar una convención de energía mecánica  en eléctrica. El viento tiene un intrínseco carácter aleatorio. Este carácter entrópico de la fuente eólica  afecta apreciablemente la fiabilidad operacional del sistema.

Por otra parte la incertidumbre ligada a esta  característica del régimen de vientos puede ser descrita, mediante el concepto de entropía diferencial. La entropía diferencial, por el contrario,  se enmarca en la teoría  de la información, y como establece Dimitrev, es una medida  de la indeterminación  media de  una magnitud aleatoria.

En una primera aproximación, esta idea puede ser entendida del modo siguiente: sea la salida del sistema de tal grado de aleatoriedad, que sean posibles  P  resultados de salida. Se dice entonces que la indeterminación viene dada por la expresión logarítmica:

H  = log P                                                      (1)

Ejemplo: sean 27 bolitas de aspecto exterior idéntico, Se conoce, sin embargo, que una de las bolitas es ligeramente más pesada que el resto del conjunto. De lo que se trata es de determinar el número mínimo de pesadas que es necesario realizar en una balanza de comparación, para detectar la bolita más pesada.

Solución:

De acuerdo con la formula  (1), evaluada para  P = 27, la indeterminación inicial es: H = log  27.

Por otra parte, la incertidumbre eliminada en cada pesada es  log3, dado que tres son los resultados posibles de una pesada de comparación. De modo que el numero mínimo de pesadas viene dada por:

BM05_F3_Fórmula
y, por tanto, se tiene  n =  3.

No resulta difícil comprobar que, efectivamente, agrupando inicialmente las 27 bolitas en tres grupos de nueve bolitas cada uno, el problema se resuelve en tres pesadas.

Generalizando ahora el problema tratado anteriormente, se puede concluir que se trata de una aproximación sucesiva a la eliminación total de la incertidumbre inicial. En cada etapa, mediante la información se iba eliminando incertidumbre. Se trata de lo que se conoce como principio  Neguentropico de la información. Obviamente, neguentropia, en este contexto, es sinónimo de nivel de conocimiento sobre el sistema.

Share

Fotoconversión y Termoconversión de la luz solar

La fotosfera y la constante de Stephan-Boltzmann

La radiación solar que llega a la Tierra procedente del Sol, en forma de luz visible procede de la fotosfera solar. Aproximadamente, se trata de un emisor de radiación de cuerpo negro a una temperatura cercana a los 6000 K. En la descripción de este proceso de transferencia de calor, la ley de Stefan—Boltzmann, la cual describe la emisión de radiación, juega un papel esencial

 La obtención de la fórmula de la constante de Stephan –Boltzmann solo es posible mediante la aplicación de métodos propios de la física estadística. La termodinámica clásica no permite obtener este resultado, en rigor, solo permite concluir que el cuerpo negro emite energía por unidad de tiempo proporcionalmente a la cuarta potencia de la temperatura absoluta T(K).

 La termodinámica estadística va más allá de esto, proporcionado la fórmula deseada. El efecto útil de este resultado, no consiste solo en  la obtención de la fórmula como tal, sino también en el hecho de que, a lo largo de la demostración, se puede apreciar con claridad el vínculo esencial existente entre las dos opciones de utilización de la luz solar como fuente de energía: la térmica y la fotovoltaica.  La solución de la integral (1) da como resultado:

BM04r_F3_Fórmula1

Nótese que se trata, hasta aquí de radiación en estado de equilibrio, por ejemplo radiación encerrada en una cavidad (ver Fig. 1).

Sin embargo, ley de Stephan—Boltzmann se refiere a un proceso de emisión de radiación. Se trata de  un caso típico de un sistema en estado de desequilibrio en el que tiene lugar un proceso de transferencia de energía por radiación y establece que “un cuerpo negro emite radiación con una potencia emisiva hemisférica total, [W/m²] proporcional a la cuarta potencia de su temperatura”

BM04r_F1Cavidad con radiación cuerpo negro equilibrio

Fig. 1. Cuerpo negro en equilibrio.

Sea la misma cavidad con radiación en equilibrio en su interior, en la que se ha practicado un orificio de forma que se ha convertido en un sistema emisor de radiación. Se conoce también que, de acuerdo con la teoría cuántica, los fotones viajan a la velocidad de la luz c y que estos abandonan la cavidad en proporción directa al diferencial de ángulo solido asociado a la dirección de su trayectoria,   obviamente, como una mitad de estos fotones va en una dirección y la otra en la contraria, resulta la expresión deseada:

BM04r_F4_Fórmula2

donde: es la constante de Stephan–Boltzmann y es  igual a 5,6704·10-8 Wm-2K-4.

Esta expresión puede ser escrita de una forma diferente. Para ello es necesario introducir el concepto óptico de índice de refracción, el cual se define de acuerdo con la formula:

BM04r_F5_Fórmula3

 En realidad se trata de la inclusión en el modelo del hecho físico de que la presencia de un medio dieléctrico de índice de refracción diferente de uno, modifica la expresión de la constante de Stefan–Boltzmann para el vacio, aumentando su valor. En el caso  de la fotosfera solar como emisor de radiación de cuerpo negro, se tiene n = 1.

Interpretación física de la demostración: foto y termo conversión de la luz solar

 A los efectos de establecer una relación conceptual entre las dos formas básicas de utilización de la luz solar como fuente de energía, la térmica y la fotovoltaica, se pone de manifiesto el carácter integral de la emisión de energía térmica que describe la ley de Stefan—Boltzmann. Se trata de reparar en el hecho de que a la emisión de energía contribuyen todos los modos de vibración presentes en el espectro de emisión.

 Conceptualmente, la diferencia entre una forma u otra forma de conversión de la luz solar reside en el hecho de que la celda solar convierte la luz solar en energía eléctrica intervalo por intervalo de frecuencia, mientras el cuerpo que absorbe la luz, se calienta mediante un mecanismo fonónico y entonces emite radiación de acuerdo con la ley de Stephan-Boltzmann.

 Desde el punto de vista espectral, esto último lo hace ya integralmente, desentendiéndose de la distribución de frecuencias. Sin embargo, y esto es lo más importante, a ella contribuyen, como contribuyen también en el caso de la conversión fotovoltaica, los modos de vibración descritos anteriormente.

Blog4r_F2_Colector y móduloFV

Fig.2. Colector solar plano y módulo fotovoltaivo.

 Dado que se trata de una forma menos detallada de conversión, la cual lleva implícito cierto nivel de desinformación y, por tanto, un proceso de conversión de una forma de energía en otra que tiene lugar con mayor grado de irreversibilidad, resulta esperable que el resultado final sea menos valioso, calor a baja temperatura, en contraposición a la energía eléctrica producida por la conversión fotovoltaica; una energía de máxima gradación, energía eléctrica, la que resulta del proceso de fotoconversion de la luz solar.

 

Share

La Entropía de Boltzmann

El  concepto de entropía  fue establecido por  Rudolf  Clausius en la segunda mitad  del  Siglo  XIX, en el limitado contexto de la  termodinámica  clásica. Sin dudas  es la aproximación más conocida y divulgada  del polémico concepto, debido a que ha encontrado un sinnúmero de aplicaciones en el campo de la termodinámica técnica, de la química y en otros campos específicos de la ciencia. Sin embargo, intrínseca en esta formulación esta la dificultad señalada por  W.  Pauli que  reza  asi:

 “Extraño nos parece que en la termodinámica siempre es necesario hacer una  rigurosa diferenciación entre calor y trabajo,  a pesar de que el primer principio habla de su equivalencia. La  mecánica estadística (la basada  entre  otras  cosas  en el concepto  estadistico de  entropía),  no requiere de estos procedimientos  mágicos. Ella explica las peculiares propiedades  termodinámicas por medio del comportamiento microscópico de los sistemas dotados de un gran número de  grados de libertad inimaginablemente grandes”.

 Al mismo problema de la termodinámica clásica se refirio Leon  Brillouin en su Libro  Ciencia, Información e Incertidumbre. En su capítulo I el autor  escribió:

“En la termodinámica  clásica  el concepto de valor parece estar  esencialmente ligado a los conceptos de calor y temperatura. Los físicos no han sido capaces, y quizás no lo sean, de desligar estas entidades”.

 En el caso específico de esta blog, cuyo objetivo fundamental es la interpretación y aplicación de la II  Ley en universos muy alejados del lugar de origen de la termodinámica, tanto los señalamientos de Pauli, como los de Brillouin tienen gran relevancia.

Entropia y II ley de la Termodinámica

 Sin embargo, constituye  un hecho indiscutible, que desde su surgimiento la mecánica estadística, y especialmente  su concepto estadístico de entropía, ha sido patrimonio casi exclusivo de físicos y teóricos en general, que han encontrado en ella solución  a problemas fundamentales y también enjundiosas  aplicaciones. A  esto se  añade  que, desafortunadamente, ha sido tradicional la presentación separada de la termodinámica fenomenológica, es decir, la llamada termodinámica clásica y la  mucho más  potente  como teoría  física,  termodinámica  estadística.

 Aunque resulte increíble, esta  conducta estuvo signada por el hecho de que, surgida en el punto más critico de la controversia de los físicos Mach y Ostwald, de gran influencia entonces en Europa, con Boltzmann, sobre la existencia misma de los átomos, el nuevo enfoque de la termodinámica siempre pendió la duda sobre sus propios fundamentos.

 De este modo, la más ortodoxa formulación clásica de la termodinámica siempre ha resultado privilegiada en relación con la estadística lo que  sin dudas  resulto en perjuicio  de  la  formación  de generaciones  y generaciones  de profesionales  de diversos tipos. Como es conocido en el caso de la  termodinámica estadística, se trata de un enfoque microscópico que depende absolutamente de la elaboración de un modelo físico. Obviamente, dado que ya no existe  duda sobre la existencia misma de los átomos, información que hubiera significado  para  Boltzmann la vida, no se justifica la posición original de preterir la mecánica estadística.

  Dado que el concepto de entropía de  Boltzmann forma parte esencial de este universo, si se quiere alcanzar una comprensión masiva del concepto, es necesario poner especial énfasis en la claridad de la presentación. Una forma de lograr esto, sin dudas lo constituye el proceder de inicio a una formulación del concepto de entropía con un enfoque estadístico, obviando cualquier referencia  a la formulación clásica. Esta última  resulta particularmente inadecuada cuando de enfrentar el reto de  Brillouin de extender  la  termodinámica  más allá  de  su lugar  de origen se trata.

 Por otra parte, a partir de la aparición en pleno  Siglo  XX de la  teoría de la información, especie de extensión de la termodinámica como rama  de la física teórica, el concepto de entropía adquirió una nueva connotación y también un nuevo significado. De hecho adquirió una nueva dimensión, toda vez  que un concepto propio  de la teoría  de la información, la  llamada  entropía  de  Shannon, al margen  de  su  total  semejanza de su  expresión matemática con  la definición de entropía  de Boltzmann, es  una  medida del grado de desinformación  que se tiene sobre  un sistema  y no se relaciona, por tanto, como la entropía  en termodinámica, con el estado del sistema como tal. Esta  sutil diferencia es  muy  importante.

  A  continuación se desarrollan  distintas  aplicaciones del concepto de  entropía  estadística de  Boltzmann con el propósito de mostrar  su  universalidad  y, de este modo, su inestimable  valor. Se  trata de temas diversos, algunos  de ellos sin antecedente  conocido en la literatura  especializada, como la pandemia  del VIH, por  ejemplo. Este  es  solo el comienzo de un esfuerzo   abarcador que incluirá  en un futuro inmediato que abarcara en el caso del VIH, tanto el mecanismo de acción  de  la  adquisición de la  enfermedad como fenómeno de  invasión viral de las  células sanas,  como  su  comportamiento epidemiológico. Este  es  un tema, como se  conoce, altamente  sensible  para  la  humanidad.

Share

La lógica ilógica del micromundo

La lógica del micromundo incluido el átomo, el núcleo y las partículas elementales que lo constituye, como el neutrón, el protón, los mesones, difiere sustancialmente de la lógica del macromundo; el mundo en que vivimos que ha condicionado todas nuestras perfecciones del mundo circundante. A partir de las representaciones que el ser humano ha desarrollado sobre la base de sus experiencias cotidianas, es muy difícil aceptar la lógica del micromundo, es decir, la lógica de la mecánica cuántica.

La primera cosa que es importante no dejar de repetir es que la capacidad de predicción, como teoría científica, de la mecánica cuántica se basa en consideraciones de naturaleza probabilística.

En realidad, para  comprender el enfoque  microscópico de  Boltzmann, no es necesario estudiar  en detalle la peculiar  composición atómica.

Desafortunadamente, los prejuicios contra el concepto de entropía  estadística han durado demasiado, casí  un  siglo. Hoy  día el concepto tiene, docentemente,  un alcance  limitado, siendo patrimonio casi exclusivo del mundo  de los  físicos  teóricos.

Existen dos formas de percibir  la realidad, la racional y lógica propia  de la ciencia, y la intuitiva, esencialmente  subjetiva, propia  del  arte. En realidad  no es una frontera definida  lo que las divide;  hay mucho de intuición en la  ciencia  y también hay racionalidad  en el reflejo de la realidad  del  artista.

La  obra de  Boltzmann se  ubica en el tipo de reflejo  racional de la realidad, la de  Hawking  en esa  especie de tierra  de  nadie entre lo racional y lo estético, mitad ciencia y mitad  poesía. Ambos  resultaron ser del tipo de ser  humano que, al decir del poeta guatemalteco  Roque  Dalton,  son  los  culpables  de nuestros sueños. La  muestra  plástica  que aquí se ofrece, con su obstinada insistencia  en el agobiante  tema de la  irreversibilidad  de los procesos reales, constituye  un imprescindible homenaje  a estos dos  físicos.

Una  aclaración  necesaria

Este trabajo constituye solo   un paso  más de los esfuerzos realizados  por los autores  para colocar el  llamado  principio  de entropía  de  Boltzmann y el enfoque  mismo del gran científico austriaco sobre  el fenómeno de la irreversibilidad, que es lo mismo que decir sobre los procesos de  degradación de los  sistemas para la vida, en el centro de  la  lucha por la  supervivencia humana.

 De lo que se trata es de intentar  resolver toda  una larga cadena de problemas actuales que en su devenir podrían conducir a un dramático escenario. Se  trata de una forma de enfocar la lucha por evitar catástrofes de todo tipo,  de mitigar  sus  consecuencias  en el caso de que ocurran, y también de enfocar  racionalmente el problema del uso  de la energía en un mundo que cada vez comprende mejor que  los recursos de que dispone son finitos y que ineluctablemente se agotaran en un futuro demasiado cercano.

Cuba, país  donde se pueden encontrar los  antecedentes  de estas ideas, recogidas en la monografista titulada  Termodinámica de los concentradores solares, Editorial Española, resultado  bibliográfico  de un curso de postgrado de carácter  nacional que  acumula casi veinte  años de experiencias docentes y de investigación sobre  fuentes  renovables de energía; debe ser por lógica  y derecho propio .

Una  experiencia  sacada  de  este esfuerzo  docente  es  que el proceso  de  concentración de  la luz  solar  constituye  una  forma  clara y rigurosa, muy original, de ´presentar el concepto de  entropía  de  Boltzmann”. Este enfoque debería formar parte de la docencia habitual universitaria y tecnológica.

Más  aun, dada la sencillez  de su formulación matemática del concepto de entropía  de  Boltzmann,  que requiere solo el dominio del concepto de logaritmo y de algunas de sus propiedades  elementales, la empresa resulta en principio perfectamente  factible. La  célebre formula física:

                 S =    k · ln W

la cual, sin tanto impacto como la relativista de  Einstein:  E = mc2, removió los cimientos de la física teórica  a principios  del  siglo XX.

Por otra parte, ya hoy día está claro para todo el mundo que los  recursos  de que  el  hombre  dispone para  vivir  están sometidos hoy día  a  un constante proceso  de extinción y degradación que, por lo general, lamentablemente  se  manifiesta  a  un ritmo  vertiginoso. Se trata  de un proceso constante de aumento de entropía en  el mundo, integralmente considerado, como un sistema, que la supervivencia humana, en peligro,  impone  controlar con premura. Por esta  razón, la  llamada  definición estadística  de entropía, la de  Boltzmann, sin dudas, la forma  más clara de presentar  este  concepto, necesariamente  debe ser  del  conocimiento de todos.

Share

Ludwig E. Boltzmann

Enlace

 Ludwig Eduard Boltzmann
(Viena1844 – DuinoItalia, 1906)
 

En la austera  tumba de Boltzmann, en el Zentralfriedhof, el cementerio central de Viena, en el pedestal se puede ver, caso quizás  único en un cementerio, una  fórmula  matemática, la  célebre formula física:

                                     S =   k·ln W

 la cual, sin tanto impacto publicitario como la de  Einstein,  E = mc2, removió los cimientos de la física teórica  a principios  del  siglo XX.

Logo-de-blog_mario_21.jpg

Hoy  día  esta  claro  que  la  obstinada  y  absurda  oposición brindada  por  Ernst  Mach y  Ostwald al enfoque  microscópico  de  Boltzmann  los  llevo, en su obstinación al absurdo de negar  la  propia  existencia  de  los  átomos. Esto  sembró  la  duda  sobre  la propia  interpretación microscópica  de la  entropía, esencialmente  probabilística, y de paso sobre  la  genial interpretación de  Boltzmann  de la irreversibilidad. Por  esta  razón, durante  décadas, se  ha preferido  siempre  la presentación de la termodinámica  con el  enfoque  clásico, también denominado  fenomenológico.

Pero, sin dudas, la peor  consecuencia de todo este  absurdo fue el suicidio  del propio  Boltzmann, presa  de gran depresión al no poder  mostrar la evidencia  de la existencia  de los  átomos. Paradójicamente, solo dos  años  después  de su muerte, el genial experimento  de  Perrit, basado en  la explicación de  Einstein del movimiento  browniano, proporciono la prueba deseada.

 Por  estas razones, desde hace más de un siglo la física estadística, que es lo mismo que decir la termodinámica estadística, ha sido patrimonio exclusivo de los físicos teóricos y, de este modo utilizada  limitadamente solo en problemas de esta rama de la física. Sin embargo, resulta evidente que comprobada hasta la saciedad la  existencia de los átomos, lo que de haber ocurrido a tiempo hubiera   evitado el suicidio de  Boltzmann, no existe ya razón alguna para no incluir  la física estadística como una rama del conocimiento tan válida y necesaria como la propia termodinámica fenomenológica.

 Es necesario decir  también algunas palabras  sobre el resto de la  obra de  Ludwig  Boltzmann. En realidad es difícil  sobrevalorar  la obra de  Boltzmann, inestimable por su valor práctico y también teórico. Además de su célebre  teorema  H, brillante fundamentación teórica de la  II  Ley de la Termodinámica, estableció el principio de equiparticion de la energía a partir de los grados de libertad de un sistema. Esta fue la base para la determinación de los calores específicos de los gases poli-atómicos. Suya es también la llamada ecuación cinética de los gases, base  para la descripción de sistemas en estado de desequilibrio.

Stephen  Hawking  en su libro  Historia  del  Tiempo, especie  de  best  seller  científico,  estableció  la idea  de lo que  el denomina  flecha  del  tiempo; una  forma  bella  y original de  expresar  la esencia  del  trascendental concepto  de  irreversibilidad, quizás  el  más  universal de  los  conceptos científicos.Pero  sería  injusto atribuirle  a  Hawking la  paternidad  de esta  idea. En realidad  todo comenzó alrededor  de 1900 cuando  un genial  físico  austriaco, Ludwig  Boltzmann,  desarrollo  su enfoque  microscópico de la materia, incluido el concepto de entropía  estadística.

Mediante  este enfoque, Boltzmann  logro dar  una interpretación clara físicamente, con un enfoque esencialmente  probabilístico, del  llamado  principio de degradación de la  energía, consecuencia  directa  del  llamado  II  Principio  de la  Termodinámica y,  sin dudas, de  un  alcance  universal  como  ningún otro principio de  la  Física.

 Boltzmann logro precisamente,  hacer  de este   principio  algo  verdaderamente  universal  por  la infinita  gama  de aplicaciones a  sistemas  y procesos,  muy  alejados del universo de  procesos energéticos  hoy  convencionales en los que  tuvo su  origen,  que  en lo adelante fueron posibles. Sin embargo, el mundo científico  no fue  generoso  con  Ludwig  Boltzmann, ni mucho menos  proclive  a  asimilar  sus  geniales  aportes.

En medio de un cruel  y  absurdo acoso  luchaba  contra  la incomprensión de la comunidad  científica encabezada por  dos  físicos que en su afán de combatir las  ideas  de  Boltzmann  llegaron al increíble  absurdo  de negar  la existencia misma de los  átomos. Aunque  hoy  día después  de la  aparición de evidencias  tan contundentes como  la  explosión de  una  bomba  atómica, está  claro lo  absurdo de esta  idea, lo cierto es  que entonces  no existía  evidencia alguna  de la  existencia del átomo. Carente de la evidencia  experimental  que sustentase su  teoría, el genial  físico, hombre  de  profundas  convicciones  éticas, cayó en un estado de profunda  depresión.

Boltzmann cometió un error, sobrestimo el tiempo necesario  para la  aparición  de la  evidencia experimental que confirmara  su  teoría. En realidad  solo transcurrieron dos  años entre  el suicidio de  Boltzmann  y la  realización del  experimento de  Perrit  sobre  la naturaleza del  movimiento  browniano que demostró  irrefutablemente la existencia  del átomo.

En lo adelante, la  física  atómica  se desarrollo  vertiginosamente. Pero  ya era  tarde  para  el hombre  que  dio la clave de  la comprensión de los colosales  procesos de degradación que  amenazan con extinguir  la vida en el planeta.

 Lo que  la  historia  de la física le deparo a los  dos principales promotores  del acoso  a  Boltzmann fue  en realidad  muy  cruel. En realidad  sus irreales visiones de la materia, defendida  autoritariamente, y producto evidentemente de una  burda   confusión de los  campos de acción de la  filosofía  y la  física, era  aun mas  contrastante con la  realidad que lo que la  propia  existencia  del átomo, sin profundizar  en su sorprendente  estructura, puso de manifiesto.

 En su  brillante  obra  de  divulgación científica Cosmos,  Kart  Sagan describió en una contundente frase la  peculiar  naturaleza del micromundo: “La materia es la nada escribió, refiriéndose  al  hecho  de  que, de  acuerdo con la información obtenida; siempre  por  métodos  indirectos y como resultado de brillantes  experimentos  que  abarcaron un periodo de casi cuarenta  años; el átomo está  constituido por una  nube  electrónica  de  densidad  casi nula y un núcleo extraordinariamente pequeño en el que  en realidad  se concentra  toda  la materia”. Dado que la evidencia experimental es  esta, la  frase   de K. Sagan, de   carácter  informal, resulta  totalmente  justificada.

 Boltzmann que  vivía en la bucólica  seguridad  de la   Viena de los últimos  años  del  poderoso  Imperio  Austrohúngaro, ajeno totalmente  a  los  problemas  existenciales  que  hoy  agobian  al mundo,   no  imagino la magnitud colosal de  los  problemas que sería posible  abordar  con su genial interpretación del concepto  de  irreversibilidad.

Como tantas  veces  ocurre, nadie  percibió entonces el alcance de  aquel  aporte. Fue  muy  intensa la luz que arrojo sobre  el terrible  problema  de la degradación del  hábitat  humano. Pero era  demasiado audaz  para  la pobre  mentalidad científica e inmóvil percepción del mundo de  la ciencia, básicamente clásica,  de principios del Siglo XX.

Share